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Ionized regions develop ahead of shock waves for various reasons [i-5]. It is known 
[6] that in shock wave propagation in a plasma, electron thermal conductivity produces a 
heating layer ahead of the front with characteristic spatial dimension A T ~ [mi/me]i/2~, 
where T e > T i [subscripts e and i indicating electrons and ions (the presence of ions of 
only one type is assumed), m is mass, T, temperature, and s the ion mean free path length]. 
Immediately behind the wave front an abrupt increase in ion temperature occurs, while elec- 
tron temperature remains practically unchanged, after which T e and T i slowly equalize in the 
relaxation region. In principle the temperatures in question behave in the same manner in 
shock wave propagation in an initially non-isothermal plasma [7]. Ahead of the shock fronts 
the effect of preceding phenomena asserts itself. Avramenko et al. [8] considered a mechanism 
to explain increase in the degree of plasma ionization ahead of a viscous compression discon- 
tinuity in the absence of ionizing radiation from the wave front. This is due to formation 
of an ion-sound shock wave. The steady state problem of shock wave structure in a weakly 
ionized plasma was solved [8] under the condition that a planar shock wave be specified within 
the neutral component. The proposed approach can be generalized to the non-steady case, 
where the neutral component moves as a result of the action of a finite energy source E 0 by a 
specified law. In particular, we may consider as an idealized situation the self-similar 
motion of the neutral component under the action of a point energy source [9]. 

We will find the perturbation to the density of the plasma component in the heating 
layer, assuming first of all that the spatial scale $ of the density change is small in com- 
parison to the width of the heating layer. In as much as ~ ~ (Vs/c)2s where V s = [zkB(T e + 
Ti)/mi ]I/2 is the speed of ion-sound, z = lei/e I = 1 is the charge number, k B is Boltzmann's 
constant, and c is the velocity of the viscous compression discontinuity, we have a limita- 
tion imposed upon the shock wave intensity: 

( V / c )  2 << (ml/rtle) 1,2. 

In the heating layer we write the plasma dynamics equations in the form 

c) (r~-~p)/Ot + 0 (r;-lpv)/Or = O; ( t )  

6v/Ot + v&,/dr = - (V,,2/p) Op/Or - v,~, (u - v@ ( 2 )  

Here j = I, 2, 3 for planar, cylindrical, and spherical waves; p and v are the mass density 
and velocity of the plasma component; r and t are the coordinate and time. The velocity of 
the neutral component Vn(r , t) will be considered known (from the point explosion problem of 
[9]). We neglect any reciprocal action of the charged component upon the neutral, since 
P0/Pn0 << 1 (weakly ionized plasma), Pn is the mass density of neutrals, and the subscript 0 
denotes the undisturbed state of the fields. In essence, Eqs. (I), (2) describe the dynamics 
of the ion-sound wave excited by the outside source Vn(r , t). 

The self-similar motion of the neutral component is described by the dimensionless vari- 
able I = r/ri(t), where ri( 0 = [Eo• p~]11(2+J)tJ1(2§ the law of motion for the front; the 
subscript 2 denotes fields on the front; x(y) is a dimensionless coefficient of the order of 
magnitude of unity [9]. The front velocity is 

C = ~ _ .  7 ~ [q/(2+j)__ 2 r2(t ) 
2+j t 

For a strong shock wave, on the front we have the conditions 

v ~ 2 = Z c ( y +  1) -~, P.2 = o , , o ( v +  t ) ( V -  1) -~ 

( u  i s  t h e  a d i a b a t i c  i n d e x  f o r  t h e  n e u t r a l  g a s ) .  
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Quasi-steady Approximation. We introduce a coordinate system attached to the front: 

t 

t' = t, r' = r - f c ( x )  d't. 
0 

In the vicinity of the front the particle velocity v is defined by the velocity c, and the 
explicit dependence upon t' is slow. Therefore the local algebraic relationship (polariza- 
tion ratio) between p and v can be found approximately from the condition that the fields are 
quasi-static in the primed coordinate system. Neglecting the term containing 3/8t' in Eq. 
(i) we have: 

P (r', t ' ) = K ( t ' ) { r  2-1 [c (t') - v ( r ' ,  t') l}-< (3) 
Here K(t') is an integration constant, which can be expressed in terms of the field values on 
the front : 

K (t') = picrJ-lp,,o/p.2. (4) 

2 
In the ion-sound wave problem of [8] the inequality V s >> cv is satisfied, so that Eqs. 

(2), (3) can be solved approximately, if we neglect the terms with dv/dt in Eq. (2). As a 
result we obtain an ordinary differential equation for u = [(c - v)rJ-l] -l (the variable t 
appearing as a parameter): 

d u / a r  - u (v,, - c) v, . /V~ - vi . /(V~r i- ')  = O. ( 5 )  

I n  Eq. ( 5 )  V i n ( r )  and v n ( r )  a r e  d i s c o n t i n u o u s  f u n c t i o n s  a t  r = r i ( t ) .  I n  t h e  r e g i o n  a h e a d  o f  
o 

the front at v n = 0, Vin = Vin, Eq. (5) has the general solution 

u = u (r2) exp [ - (r - r i ) /~]  + r (r), ( 6 )  
r 

exp (-r/~) f w h e r e  ~ = V~/[  c (t) v~ ]; �9 (r) = c ~  dxx  1-j exp ( x / l ) .  
r2 

For j ~ i the variable ~ can be written in a form asymptotic in the parameter ~ = $(t)/ 
r2(t) < i, while for v we write approximately 

v ( r , t ) = c ( 1 - n ~ ) { 1 - R j + e x p [ ( r - r 2 ) / ~ - ~ t l }  -1, r > r 2 ( t ) .  ( 7 )  

Here 
i-I j-1 } 

c -~2~y~  ( k + j , 2 ) ! a k  ( ~ ) e ( , _ . : ) / ~  ( k + j - 2 ) ! & ( - ~ ]  , ] > 1 .  ~t = In [(r/r2) j-1 v2 (c - v2) -I ], Ri = ~ ] 7  

7) is an exact representation of Eq. (6), therefore R l s 0. For the density For j = i Eq. 
9'of the plasma component ahead of the front we have 

p(r , t )~p2p .2  (l-~)(c_~2)e + , r > ~ ( O .  (8)  

We must call attention to the unsatisfaction of the term "ion-sound shock wave" 
proposed in [8]. As is well known, an increase in the dissipative coefficient should lead to ~ 
increase in thickness of the wave front. In the current case we have the reverse dependence: 
with increase in V~n the thickness ~ decreases. 

Behind the front [at r < ri(t)] we can obtain an approximate expression for the fields 

by taking v ~ Vn(r, t): 

p (r, t) ~ @2p~op~c (c - v,,) -~ (~ / r )  j-~, r < ~ (t). ( 9 )  

Then v ~ Vn2 and from the relationships upon the front it follows that (c - vi)/v 2 = 9n0/ 

(Pn2 - Pn0) z (y - 1)/2 = const. 

If we assume that as in the planar steady state problem of [8] for Q2 we have the condi- 

tion 

P2 = pop,2/poo = P0 (? + U/(V - 1), ( 1 0 )  

then for j = i Eqs. (7)-(9) coincide formally with those found in [8]. For j ~ i a factor 
appears describing the divergence of (ri/r)J -I. In this case the disturbance of the plasma 
component drives the neutral wave front further, the greater j. In the non-steady case under 
consideration here a relationship like Eq. (i0) must be found from the condition of conserva- 
tion of the finite energy liberated E 0. With consideration of this, the solution of Eqs. 
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(7)-(9) can be considered as a generalization of the solution of [8] to the non-steady problem 
of one-dimensional motion of the plasma component near the front as a result of point energy 

liberation. 

The non-steady nature of the wave of Eqs. (7), (8) follows from the fact that its form 
is defined by the self-similar variable I = r/r 2, the front width $(t) increasing with time, 
while the amplitude of the velocity decreases as c(t). The total energy H of the plasma 
component included in a "sphere" of radius r, at the time t has the form 

r 

H (r, t) = 2i- I~ f dxxJ-lp (V~ / (~  - I) + ~ /2 ) ,  (11)  
0 

where yp is the adiabatic index for the plasma component, ~j ~ 3.141 for j = 2, 3 and 1 for 
j = i. We neglect the contribution to H of the electric field with density equal to D2(Vp/ 
p)2p0V~/2 (where D is the Debye screening radius) in the long-wave description of Eqs. (i), 
(2). Then the boundary condition with consideration of loss of ion mechanical energy due to 
collisions with the neutral component (we neglect losses due to electron friction) can be 
written as 

[H(r, 0 - H o ( O  - Q (r,t)],. |  =Ep, 

(r, 0 = 2J-tNv~P0 dxx j-i fa l se ( s )  + dxx~-l f dsv ( s  ) , (12)  
x 

Here  Ho( r ,  t )  = H ( r ,  t )  f o r  t < 0i Ep i s  t h e  p o r t i o n  o f  t h e  l i b e r a t e d  e n e r g y  E 0 t r a n s f e r r e d  
t o  t h e  p lasma component  f o r  an e x p l o s i o n  a t  t h e  t im e  t = 0. I f  E0 i s  u n i f o r m l y  d i s t r i b u t e d  
o v e r  t h e  componen t s ,  t h e n  Ep ~ E0p0 /pno .  The i n t e r n a l  i n t e g r a l s  i n  Eq. ( t 2 )  r e p r e s e n t  t h e  
work of friction forces along the trajectories of motion s(t, x) of a "material point," which 
is located at the point x at the initial moment t = 0. The term ~i considers the contribution 
of material points which are found behind the shock wave front by time t. The friction force 
then performs work only along the portions of the trajectories located ahead of the shock 
front, since in our model complete entrainment of the plasma occurs behind the front, v = v n- 
It follows from this that r1(t) is a solution of the equation s(t, r l) = r2(t), while the time 
8(x) at which the shock wave overtakes the "material point" which was located at a distance 
x from the center at t = 0 is determined by the equation 

s(0, x) = ~ (0)~ ( i 3 )  

The term Q2 reflects the contribution of points with x > rz(t), while the work is calculated 
along the segment included between x and s(t, x). 

The trajectory of the motion of a "material point" s(t, x) is described by the equation 

d s / ~  = v ( s ( t ) ,  0 (14)  

with the initial condition s(0) = x and is known, if the solution of the problem v(r, t) 
is found in the region r > r 2 and r > 0. Making use of Eq. (14), in the internal integrals 
of Eq. (12) we can turn to integration over time, and the expression for Q(r, t) takes the 
form 

(r, t) = fjt'  (t ') + f xx f dt,  (t,) t, 
* r [  ' 

xlV~I x/Vsl J 

where  Vsl* g Vs~(0)  ; V s2~(t) ~ kB(Tio + Te2) /m i i s  t h e  v e l o c i t y  o f  i o n - s o u n d  ahead  o f  t h e  shock  
wave front for t > 0; r, is the minimum scale with which the initial stage of disturbance de- 
velopment can be excluded, when "material points" located ahead of the shock wave front are 
not set into motion. The value of r, can be found by solving Eq. (13) for 8 ~ r2(O)/V~1. 

To find P2, as follows from Eqs. (11), (12), we must know the distributions of p, v, 
T e, T i in the region 0 < r < rz(t). However near the center of symmetry it becomes impossible 
to neglect temperature gradients and the model of Eqs. (i), (2) is not suitable. We will make 
use of approximate expressions for the fields at 0 < r < r2: v ~ Vn, T i ~ Tn, T i < T e in the 
relaxation zone and T e ~ T i outside that zone. Further, in order that the internal energy of 
the plasma component included inside the "sphere" of radius r2(t) remain finite, we require 
that O/P= ~ Pn/Pn2 as r + 0 at any t. Thus, the values of p/p2 and 9n/Pn2 differ by less than 
an order of magnitude everywhere in the region 0 < r < r~. Then in the case of spherical sym- 
metry 
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4x (Vv - 1)-: _ drripV~ = drr ipT,  + drrip (T.  - T.)  =- 
y p - 1  mi [ 

0 r2-A T 

4~ (~p - 1) -~ P~p, [ 2 Q B k ~ T J m ~  + (Ar/r=) ~tV~ol. 

1 

H e r e  ~: = ~:  (Ar/r~) and  Q i s  a f a c t o r  o f  t h e  o r d e r  o f  u n i t y ;  B = f dXX=h (k);ih (k) = p./p~2 i s  a known 
0 

function of the point explosion problem of [9]; p is the pressure. Using the expression for 
the temperature discontinuity upon the front of an intense shock wave Tn2 = Tn0(2~/q)( Y - i) • 
(y + i) -2, q = (a0/c) 2 (a 0 is the unperturbed speed of sound in the neutral gas, a0 ~ = ~V 2s0Ti0/ 

Te0), considering that a~ = TkBTn0/m i = 7Pn0/gn0, Ep ~ E0p0/pno, and neglecting losses (~3 <<w 
Ep, and the effect of dissipation will be evaluated below), from Eqs. (Ii), (12) for j = e 
find 

] P2 1) A(? )  - + 2 O N +  Ar ( v + l )  ~ 1 25• ~+W'+~V ( 1 6 )  ~ ( v -  ~ o ~  = - - 5 - -  ~ + - g ; ( v ~ -  ~) ~ ~ (v~- ~) , 
�9 4~r2P0C 

where 

1 
A (~/) = f d)~fi (k) [1 - 2 f  00/(? + I) 1-:; A (1,4) -= 0,7433; B =, 0 ,1588;  

0 

qJ = 4~ f d r ~  [(P - Po) V~/(~p - 1) + pv~/2]; 
r2 

q~' = 4~ ( ' l p -  1) -~ p0 f dr rz (V~ - V~); / (X) = ( v / c )  (? + 1)/2. 
r2 

W i t h i n  t h e  f r a m e w o r k  o f  t h e  a p p r o x i m a t i o n  u s e d  one  c a n n o t  o b t a i n  �9 a s  a f u n c t i o n  o f  p i ,  
s i n c e  e x p r e s s i o n s  f o r  p and  v a r e  l a c k i n g  f o r  r >> r 2. But  t h e  f u n c t i o n  �9 i n  Eq. ( 1 6 )  y i e l d s  
a s m a l l  c o n t r i b u t i o n  ( t o  t h e  e s t i m a t e d  b e l o w ) ,  and  t o  o b t a i n  an a p p r o x i m a t e  e x p r e s s i o n  f o r  P2 
we can  u s e  t h e  v a l u e  ~ = 0 .  Then ,  c o n s i d e r i n g  t h e  t e r m  w i t h  ~ ' ,  r e l a t e d  t o  e l e c t r o n  t h e r m a l  
c o n d u c t i v i t y ,  we o b t a i n  an  a m p l i t u d e  v a l u e  d e p e n d e n t  u p o n  t h e  p a r a m e t e r s  Vs0 /C and A T / r i :  

y+l 32--~(Y+I):('~'-I)--~'2 ~~ \ c ] 2 
P2 -= p0 ..... (17) 

y - I (Vp - I) A (y) + (y + I) [20 B + (AT/ri) ~Pl (VsO/C) 2 (Y + I )  2 /2  ] 

H e r e  ,2  =- ~ (Ar/ri)  = 0.895611 + 0.9305At/r2 + (Ar / r i )25 /171  f o r  t h e  c a s e  o f  t h e  T e d i s t r i b u t i o n  t y p i c a l  
of a thermal wave [6]. 

Solution Close to Self-similar. Another approximate representation of the solution of 
system (i), (2) with a wider range of applicability can be constructed. We do this in the 
dimensionless variables ~ = r/ri, q = (ao/c) 2 . We neglect the term containing q(3/Sq) in 
Eqs. (i), (2) since q << i. Then, considering that the fields depend upon q as a parameter, 
we have 

- c ~ J d p / d k  + d (ki-~pv)/d),  =- 0; 

- c ) , d v / d ) ,  + vdv /d) ,  + (V~/p) d p / d k  =- vi,, (v,, - v). 

(18) 
(19) 

From Eq. (18) we find 

p-ldp/dk = [X:-~/(Xc - v)] d (XJ-:v)/dk. (20) 

Ahead of the wave front v n = 0, so that after substitution of Eq. (20) into Eq. (19) we ob- 
tain an equation for v(%) at i > i, considering that V$ >> vc: 

(v - )~c)-ld ( kJ - l v ) /dk  =- a-:~J- lv /c .  

The solution of this equation for the initial condition v = v 2 ~ Vn2 can be represented in 
the form 

u = c), i-1 [e (~2-1V(2~> (7 + 1) /2  - e ~'2/(2~) f dxxt - ie  -:?/:2~ ]-l, ( 2 1 )  
1 

or, retaining the first term in the representation of the integral asymptotic in the parameter 
<< i in Eq. (21), we obtain approximately 

v ~ ck {1 + [ ( ' , / -  1 ) /2 ]  X j exp [(;k 2 - 1)/(2c0 ]} -l, k > 1. (22) 
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F o r  p ( X ) ,  we f i n d  f r o m  E q s .  (20), (22) 

p(X)  = p 2  + (P2 - P0){k ~ e x p  [(1 - k 2 ) / ( 2 a ) ] -  1}, X > 1. ( 2 3 )  

Comparing the result of Eqs. (22), (23) with the wave front structure of Eqs. (7), (8) 
we note that the stricter consideration of non-steadiness produces an increase in front cur- 
vature, which increases with increase in j. In fact, the quasi-steady approximation of Eq. 
(8) with the condition of Eq. (i0) on the shock front yields 

P ~ Po(Y - 1)-1{7 - 1 + 2 e x p  [(1 - k ) / a ] } ,  i > 1, ( 2 4 )  

while the solution of Eq. (23), close to self-similar, when Eq. (I0) is considered, yields 

P ~ Po(V - l ) - l{V - 1 + 2k ~ exp [(1 - X2)/(2a)]},  k > 1. ( 2 5 )  

For ~ = ~/r z ~ j-1Eq. (24) coincides approximately with Eq. (25) in the region r z < r < 
r 2 + g. In the quasi-steady approximation Eqs. (7), (8) represent a solution in the vicinity 
of the neutral wave front, and the approximations of Eqs. (22), (23) serve in the region 
r 2 < r < r 2 + AT, A T z ~(mi/me)I/2 The approximate transformation of Eq. (23) into Eq. (8) 
near the wave front serves as justification of the assumptions made in deriving Eqs. (7), (8). 
The accuracy of the solution of Eqs. (7), (8) falls with increase in the order of symmetry. 
In this sense the quasi-steady approximation is also quasiplanar, 

To derive Eq. (17) the simple relationships of Eqs. (3), (4), (9) of the quasi-steady 
approximation were used in place of Eq. (20) and v ~ Vn, I < I. This is possible because the 
main contribution to the integrals of Eq. (Ii) is made by disturbance of the plasma component 
near the shock wave front. 

From Eqs. (16), (22), (23) with consideration of the fact that ~ changes but little upon 
change of the upper integration limit in Eq. (16) from ~ to A T , we have 

= 4~a~c2{p2[(V,~/c) 2 + F ] -  po[(V~l/c)2+ F - FI]}, ( 2 6 )  

where 

F ~ ( ~  - 1 ) ( y / ( ?  + 1) - (? - 1) In [(7 + 1 ) / ( y  - 1)1/2}; 

F~ ~ ( ~ -  1 ) { ( 1 / 2 ) 1 n  [(V + 1 ) / ( ?  - 1 ) 1 -  (7 + 1 )  -1} > 0. 

The presence in Eq. (26) of the factor ~ ~ i indicates that for sufficiently narrow fronts 
[g < r2(t)(c/Vsl) 2] the effect of spreading of the plasma disturbance upon the amplitude P2 
may be neglected. It also follows from Eqs. (16) and (26) that front broadening leads to a 
decrease in p2. 

We will now estimate the effect of dissipation of the mechanical energy of plasma com- 
ponent motion due to transfer of momentum to the neutral component by the "friction ~' path. 
Using Eq. (22), from Eq. (14) we obtain for the function o(t) = s(t)/r2(t ) the equation 

do~dr = [ ] / ( 2  + ~ ] [ v ( o )  - o]/t,  v ~ v/c. 

I n t e g r a t i n g  f r o m  t t o  8 ( x ) ,  t > r / V s l ,  t o  t h e  a c c u r a c y  o f  a t e r m  o f  t h e  o r d e r  o f  m a g n i t u d e  
of ~, we find s(t) ~ x ~ r2(O) ~ const, r1(t) ~ r2(t ). In the same approximation for the 
rectified trajectories of Eq. (15) we have: 

a (,, t) m - ~ -  p0v% dyy -5/2 f dXk-tn~ (X) + f dyy -5/2 f dXX-'2b 2 (X) . 
1 [ y 

H e r e  y = x / ~  (0; H~ = (5c/2V~)~:~; H~ (y, t ) =  xr~ ~ (x/V~). An u p p e r  l i m i t  e s t i m a t e  y i e l d s  

Substitution of this expression in Eq. (16) yields 

5/3 

(~+ l)2 [~s~ - t ) +  - (vp 1)$,~to(~) 

P2 ~ P0 Y _ I (Vp - 1) A (7) + (Y + 1) [2QB + ( A r / r z )  *1 (Vso/c) 2 ('t "k I)2/21 ( 2 7 )  

As is evident from Eq. (27), the amplitude of the density wave is determined to a significant 
degree by the electron component of the plasma: its thermal conductivity and electron temper- 
atures Te0 in the absence of disturbance and Te2 behind the front. The amplitude P2 depends 
on time. Initially because of energy pumping into the ion-sound wave its amplitude increases. 
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At 

a~ > B, > (Vp- 1) 
(v + 

the amplitude reaches "saturation": 

pi=~ = p0 (rJAr) [(V - I) Wl F I 

However increases in amplitude are hindered by energy loss as a result of collisions with 
neutral particles ahead of the shock wave front, since the portion of the energy conveyed 
by the plasma component to neutrals increases with time as t 11/5, while the term with (Vs0/ 
c) 2 increases as t 6/5. If (Vs0/C) 2 < i, then P2 depends only weakly on time and its value 
is close to that of Eq. (i0); the difference from Eq. (I0) being that some "attenuation 
coefficient" less than unity appears, which may be neglected in coarse estimates. Equation 
(27) was obtained for a strong shock wave [q = (Vs0/C)2(l + Te0/Ti0) -I << I] using an upper 
bound estimate for ~. This in principle limits its applicability. 

In conclusion, we note that the simple form of Eqs. (7), (8), (18)-(22) was obtained 
with the assumption that the parameter 

cr = ~/r2 = q~/6 (l /ro) ( V / a o )  2 (5/2) 2/~ ~ 

is much less than unity (r 0 is the characteristic dynamic length of the point explosion 
problem). This implies smallness of the ratio of the spatial scale of the leading edge of 
the plasma disturbance $ to the shock wave radius r 2. 

Application. We will consider a supernova flare as a point explosion in the inter- 
stellar plasma. As is well known [I], supernova flares are one of the most important fac- 
tors maintaining the motion of the interstellar medium, which on average is a weakly ion- 
ized plasma. We will describe the adiabatic stage of supernova envelope motion on the basis 
of point explosion theory. This stage begins approximately 103 years after the flare and is 
completed after 30-50 thousand years [i0]. Then in the following stage of evolution over 
10-15 thousand years the supernova envelope cools from i0 ~ to 102 K basically because of 
intense scintillation of gas behind the shock wave front. It cannot be excluded that during 
the course of these two stages conditions may develop for formation of an ion-sound distur- 
bance with the following parameters preceding the envelope: plasma component velocity zl00 
km/sec, with amplitude several times greater than the background in the undisturbed gas; 

2 o 1018 spatial scale of the plasma component disturbance ahead of the front ~ = Vs/(CVin) z cm 

IVan = i0 -~G (cmij /4kBTi/(~mi)Nn, T i = i02 K, N n = 0.6 cm-3]. For comparison, the wave front 
radius at the end of the scintillation stage is I019 cm, while r 0 > i02~ cm. These esti- 
mates are approximate, since ion viscosity was not considered in the original Eq. (2). On 
the other hand, the appearance of supersonic protons ahead of the wave front can lead to 
development of instability and the appearance of turbulent viscosity as the dominant energy 
dissipation mechanism. 
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